Properties of the ultrashort gain length, self-amplified spontaneous emission free-electron laser in the linear regime and saturation.
نویسندگان
چکیده
VISA (Visible to Infrared SASE Amplifier) is a high-gain self-amplified spontaneous emission (SASE) free-electron laser (FEL), which achieved saturation at 840 nm within a single-pass 4-m undulator. The experiment was performed at the Accelerator Test Facility at BNL, using a high brightness 70-MeV electron beam. A gain length shorter than 18 cm has been obtained, yielding a total gain of 2 x 10(8) at saturation. The FEL performance, including the spectral, angular, and statistical properties of SASE radiation, has been characterized for different electron beam conditions. Results are compared to the three-dimensional SASE FEL theory and start-to-end numerical simulations of the entire injector, transport, and FEL systems. An agreement between simulations and experimental results has been obtained at an unprecedented level of detail.
منابع مشابه
Exponential gain and saturation of a self-amplified spontaneous emission free-electron laser.
Self-amplified spontaneous emission in a free-electron laser has been proposed for the generation of very high brightness coherent x-rays. This process involves passing a high-energy, high-charge, short-pulse, low-energy-spread, and low-emittance electron beam through the periodic magnetic field of a long series of high-quality undulator magnets. The radiation produced grows exponentially in in...
متن کاملFundamental and harmonic microbunching in a high-gain self-amplified spontaneous-emission free-electron laser.
Electron beam microbunching in both the fundamental and second harmonic in a high-gain self-amplified spontaneous emission free-electron laser (SASE FEL) was experimentally characterized using coherent transition radiation. The microbunching factors for both modes (b(1) and b(2)) approach unity, an indication of FEL saturation. These measurements are compared to the predictions of FEL simulatio...
متن کاملMeasurements of Gain Larger than 105 at 12 mm in a Self-Amplified Spontaneous-Emission Free-Electron Laser
Roger Carr Stanford Synchrotron Radiation Laboratory, Palo Alto, California 94304 (Received 29 April 1998) We report measurements of very large output intensities corresponding to a gain larger than 105 for a single pass free-electron laser operating in the self-amplified spontaneous emission (SASE) mode at 12 mm. We also report the observation and analysis of intensity fluctuations of the SASE...
متن کاملOutput characteristics of SASE-driven short wavelength FEL's
This paper investigates various properties of the “microspikes” associated with self-amplified spontaneous emission (SASE) in a short wavelength free-electron laser (FEL). Using results from the 2-D numerical simulation code GINGER, we confirm theoretical predictions such as the convective group velocity in the exponential gain regime. In the saturated gain regime beyond the initial saturation,...
متن کاملFirst observation of self-amplified spontaneous emission in a free-electron laser at 109 nm wavelength
We present the first observation of self-amplified spontaneous emission (SASE) in a free-electron laser (FEL) in the vacuum ultraviolet regime at 109 nm wavelength (11 eV). The observed free-electron laser gain (approximately 3000) and the radiation characteristics, such as dependency on bunch charge, angular distribution, spectral width, and intensity fluctuations, are all consistent with the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 67 6 Pt 2 شماره
صفحات -
تاریخ انتشار 2003